Complex Numbers and Demoivres Theorem Review Answer Key

In the field of complex numbers, DeMoivre's Theorem is ane of the most important and useful theorems which connects circuitous numbers and trigonometry. As well helpful for obtaining relationships betwixt trigonometric functions of multiple angles. DeMoivre's Theorem too known as "De Moivre'southward Identity" and "De Moivre'southward Formula". The proper noun of the theorem is after the name of cracking Mathematician De Moivre, who made many contributions to the field of mathematics, mainly in the areas of theory of probability and algebra.

Table of Content:

  • Formula
  • Proof
  • Uses
  • Problems

De Moivre'due south Formula

Mathematical Argument: For whatsoever existent number x, nosotros have

(cos x + i sin x)due north = cos(nx) + i sin(nx)

OR

\(\brainstorm{array}{l}(e^{i \theta})^due north = due east^{in \theta}\cease{array} \)

Where n is a positive integer and " i " is the imaginary part, and i = √(-1). Also assume i2 = -i.

Remark: Consequence can be shown truthful when n is a negative integer and even

north is a rational number.

Likewise Read =>

  • Complex Numbers
  • Inverse Trigonometric Functions

Aspirants are advised, before starting this section should revise and get familiar with the argand diagram and polar form of complex numbers. This department introduces -De Moivre's theorem statement, proof of theorem and some of its consequences.

De Moivre's Theorem Proof

Apply Mathematical Induction to bear witness De Moivre'southward Theorem.

We know, (cos x + i sin x)n = cos(nx) + i sin(nx) …(i)

Step 1: For due north = ane, nosotros have

(cos ten + i sin x)i = cos(1x) + i sin(1x) = cos(x) + i sin(x)

Which is true.

Pace two: Assume that formula is true for north = k.

(cos x + i sin 10)g = cos(kx) + i sin(kx) ….(2)

Footstep 3: Prove that result is true for northward = one thousand + i.

(cos x + i sin x)k+i = (cos x + i sin ten)k (cos x + i sin x)

= (cos (kx) + i sin (kx)) (cos x + i sin ten) [Using (i)]

= cos (kx) cos x − sin(kx) sinx + i (sin(kx) cosx + cos(kx) sinx)

= cos {(g+1)x} + i sin {(m+1)ten}

=> (cos x + i sin 10)thou+1 = cos {(thousand+1)x} + i sin {(k+one)x}

Hence the result is proved.

Since the theorem is true for n = 1 and n = m + 1, it is true ∀ n ≥ one.

Uses of De Moivre'southward Theorem

To discover the roots of complex numbers

If z is a circuitous number, and z = r(cos x + i sin ten) [In polar course]

And then, the nth roots of z are:

\(\brainstorm{array}{50}r^{\frac {i}{n}}\left (cos(\frac{x+2k \pi}{n}) + i\ sin (\frac{ten+2k \pi}{north}) \right )\end{array} \)

where chiliad = 0, 1, ii,….., (n − 1)

If k = 0, above formula reduce to

\(\begin{assortment}{fifty}r^{\frac {1}{n}}\left (cos(\frac{x}{n}) + i\ sin (\frac{x}{due north}) \right )\cease{assortment} \)

To obtain relationships between powers of trigonometric functions and trigonometric angles.

We utilize polar form of circuitous numbers to represent a circuitous number using trigonometry.

The parameters of the rectangular and polar form are as:

a = r cos x and b = r sin x

Where r =

\(\begin{array}{fifty}\sqrt{a^ii+b^2}\terminate{array} \)

and tan ten = (b/a)

This implies, z = a + ib = r(cos 10 + i sin x)

Raising to a Power

Example: Evaluate ( 1 + i )m.

Solution:

Permit z = 1 + i

We have to represent z in the form of r(cos θ + i sin θ).

Here,

Argument = θ = arc(tan (one/1) = arc tan(1) = π/four

Absolute value = r =

\(\begin{assortment}{l}\sqrt{(1)^ii + (1)^2}= \sqrt{two}\stop{array} \)

Applying DeMoivre's theorem, we get

z1000 = [√2{cos(π/four) + i sin(π/iv)}]1000

= two1000 {cos(1000π/four) + i sin(1000π/4)}

= ii1000 {i + i (0)}

= 21000

Bug on De Moivre's Identity

Problem i: Evaluate (2 + 2i)6

Solution: Let z = 2 + 2i

Hither, r = ii√2 and θ = 45 degrees

Since z lies in the starting time quadrant, sinθ and cosθ functions are positive.

Applying De Moivre'southward Theorem:

zhalf-dozen = (ii + 2i)6 = (ii√ii)6 [cos 450 + i sin 450]6

= (2√2)six [cos 2700 + i sin 2700]half dozen

= – 512i

Problem 2: Express 5 5th‐roots of (√3 + i) in trigonometric form.

Solution:

We know, z = a + ib = r(cos x + i sin 10)

Where r =

\(\begin{array}{l}\sqrt{a^ii+b^two}\end{array} \)

and tan ten = (b/a)

So,

Here r = ii and θ = xxx degrees

Therefore, z = ii[cos(300 + 3600 k) + i sin cos(xxx0 + 3600 k)]

Applying nth root theorem:

z1/5 = {2[cos(300 + 3600 k) + i sin cos(xxx0 + 3600 k)]}1/5

= 2i/v [cos((xxx0 + 3600 k)/v) + i sin cos((thirty0 + 3600 one thousand)/five)] …(ane)

Where k = 0,1,two,3,four

At thou = 0; (1)=> z1 = 21/v [cos half dozen0 + i sin 60]

At g = ane; (one)=> z1 = 21/5 [cos 780 + i sin 780]

At chiliad = ii; (1)=> z1 = 21/5 [cos 1500 + i sin 1500]

At k = iii; (1)=> z1 = 21/5 [cos 2220 + i sin 2220]

At m = 4; (1)=> z1 = 21/5 [cos 2940 + i sin 2940]

Problem 3: Express

\(\brainstorm{array}{l}\left(\frac{cos \theta + i\ sin \theta}{sin \theta + i\ cos \theta}\right)^iv\end{array} \)

in a+ib course.

Solution:

\(\begin{array}{50}\left(\frac{cos \theta + i\ sin \theta}{sin \theta + i\ cos \theta}\right)^iv\end{array} \)

=

\(\begin{assortment}{l}\frac{\left ( cos\ \theta + i\ sin\theta\right )^4}{i^iv\left ( \ cos \theta – i sin \theta\correct )^4}\end{array} \)

= (cos 4θ + i sin 4θ ) / (cos 4θ – i sin 4θ )

By rationalising the fraction, we have

= (cos 4θ + i sin 4θ )2 / (cos2 4θ – i sintwo 4θ )

= cos 8θ + i sin 8θ

Problem four: If

\(\begin{array}{fifty}{{ten}_{r}}=\cos \left( \frac{\pi }{{{2}^{r}}} \correct)+i\sin \left( \frac{\pi }{{{ii}^{r}}} \right), and then \ {{ten}_{1}}\ .\ {{10}_{2}}……\infty \ is\terminate{array} \)

Solution:

\(\begin{array}{l}{{ten}_{1}},{{x}_{2}},{{ten}_{three}}…..upto\infty =\left( \cos \frac{\pi }{2}+i\sin \frac{\pi }{2} \right)\,\,\left( \cos \frac{\pi }{{{2}^{two}}}+i\sin \frac{\pi }{{{2}^{2}}} \right) upto …..\infty \\=\cos \left( \frac{\pi }{2}+\frac{\pi }{{{2}^{ii}}}+….. \right)+i\sin \left( \frac{\pi }{two}+\frac{\pi }{{{2}^{two}}}+….. \right) \\=\cos \left( \frac{\frac{\pi }{2}}{1-\frac{1}{2}} \correct)+i\sin \left( \frac{\frac{\pi }{2}}{ane-\frac{1}{2}} \correct)\\=\cos \pi +i\sin \pi \\=-ane\finish{assortment} \)

Problem 5: The value of

\(\begin{array}{l}\frac{4(\cos {{75}^{o}}+i\sin {{75}^{o}})}{0.four(\cos {{30}^{o}}+i\sin {{thirty}^{o}})} \ is\terminate{array} \)

Solution:

\(\begin{array}{l}\frac{4(\cos {{75}^{o}}+i\sin {{75}^{o}})}{0.iv(\cos {{30}^{o}}+i\sin {{xxx}^{o}})} \\=ten(\cos {{75}^{o}}+i\sin {{75}^{o}})(\cos {{30}^{o}}-i\sin {{thirty}^{o}}) \\=ten(\cos {{45}^{o}}+i\sin {{45}^{o}})\\=\frac{10}{\sqrt{ii}}(1+i)\end{array} \)

Problem vi: If

\(\begin{array}{50}(\cos \theta +i\sin \theta )(\cos 2\theta +i\sin 2\theta )…….. (\cos n\theta +i\sin northward\theta )=1,\end{array} \)

then what is the value of

\(\brainstorm{assortment}{l}\theta\cease{array} \)

?

Solution:

\(\begin{array}{fifty}(\cos \theta +i\sin \theta )(\cos 2\theta +i\sin two\theta ) ……(\cos north\theta +i\sin n\theta )=1 \\ \cos (\theta +2\theta +three\theta +…+n\theta )+i\sin (\theta +2\theta +.+n\theta )=1 \\ \cos \left( \frac{north(n+1)}{2}\theta \right)+i\sin \left( \frac{northward(n+ane)}{ii}\theta \correct)=one\\ \cos \left( \frac{northward\,(n+ane)}{two}\theta \right)\,=\,i\text{ and }\sin \left( \frac{due north(n+1)}{2}\theta \right)\,=0 \\ \frac{n(n+one)}{2}\theta =2m\pi \\\Rightarrow \theta =\frac{4m\pi }{n(n+1)},\text where \ k\in I.\end{assortment} \)

De Moivre's Theorem – Video Lesson

De Moivre's Theorem

ramirezsions1948.blogspot.com

Source: https://byjus.com/jee/de-moviers-theorem/

0 Response to "Complex Numbers and Demoivres Theorem Review Answer Key"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel